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We explain quantum structure as due to two effects: (a) a real change of state of 
the entity under the influence of the measurement and (b) a lack of knowledge 
about a deeper deterministic reality of the measurement process. We present a 
quantum machine, with which we can illustrate in a simple way how the quantum 
structure arises as a consequence of the two mentioned effects. We introduce a 
parameter e that measures the size of the lack of knowledge of the measurement 
process, and by varying this parameter, we describe a continuous evolution from 
a quantum structure (maximal lack of knowledge) to a classical structure (zero 
lack of knowledge). We show that for intermediate values of ~ we find a new 
type of structure that is neither quantum nor classical. We apply the model to 
situations of lack of knowledge about the measurement process appearing in 
other aspects of reality. Specifically, we investigate the quantumlike structures 
that appear in the situation of psychological decision processes, where the subject 
is influenced during the testing and forms some opinions during the testing 
process. Our conclusion is that in the light of this explanation, the quantum 
probabilities are epistemic and not ontological, which means that quantum 
mechanics is compatible with a determinism of the whole. 

1. A M A C R O S C O P I C  M A C H I N E  P R O D U C I N G  Q U A N T U M  

S T R U C T U R E  

B e f o r e  we  iden t i fy  the o r ig in  o f  the appea rance  o f  q u a n t u m  structures  

in nature ,  we  desc r ibe  a m a c r o s c o p i c  m a c h i n e  that  p r o d u c e s  q u a n t u m  struc- 

ture. W e  shall  m a k e  use  i n t ens ive ly  o f  the in terna l  f u n c t i o n i n g  o f  this m a c h i n e  

to d e m o n s t r a t e  our  genera l  exp lana t ion .  

T h e  m a c h i n e  that  we  c o n s i d e r  cons is t s  o f  a phys i ca l  ent i ty  S that  is a 

po in t  par t ic le  P that  can  m o v e  on  the sur face  o f  a sphere ,  d e n o t e d  surf, wi th  

cen t e r  0 and  radius  1. T h e  uni t  v e c t o r  v w h e r e  the par t i c le  is loca ted  on sur f  
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Fig. 1. A representation of the quantum machine. (a) The physical entity P is in state p~ in 
the point v, and the elastic corresponding to the experiment e, is installed between the two 
diametrically opposed points u and - u .  (b) The particle P falls orthogonally onto the elastic 
and sticks to it. (c) The elastic breaks and the particle P is pulled toward the point u, such that 
(d) it arrives at the point u, and the experiment e, gets the outcome o~. 

represents the state Pv of the particle (see Fig. la). For each point u ~ surf,  

we introduce the following experiment eu. We consider the diametrically 
opposite point - u ,  and install a piece of elastic of length 2 such that it is 
fixed with one of its endpoints in u and the other endpoint in - u .  Once the 
elastic is installed, the particle P falls from its original place v orthogonally 
onto the elastic, and sticks on it (Fig. lb). Then the elastic breaks and the 
particle P, attached to one of the two pieces of the elastic (Fig. lc), moves 
to one of the two endpoints u or - u  (Fig. ld). Depending on whether the 
particle P arrives at u (as in Fig. 1) or at - u ,  we give the outcome o~ or 
o~ to e,. In Fig. 2 we represent the experimental process connected to e,, in 
the plane where it takes place, and we can easily calculate the probabilities 

Fig. 2. A representation of the experimental 
process in the plane where it takes place. The 
elastic of length 2, corresponding to the experi- 
ment e,,, is installed between u and -u .  The 
probability P(o'~lpO that the particle P ends 
up in point u is given by the length of the 
piece of elastic Lj divided by the length of 
the total elastic: The probability P(o'~ I pv ) that 
the particle P ends up in point - u  is given by 
the length of the piece of elastic /-2 divided 
by the length of the total elastic. 
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corresponding to the two possible outcomes. In order to do so we remark 
that the particle P arrives at u when the elastic breaks at a point of the interval 
L~, and arrives at - u  when it breaks at a point of the interval L2 (see Fig. 
2). We make the hypothesis that the elastic breaks uniformly, which means 
that the probability that the particle, being in state Pv, arrives at u, is given 
by the length of L1 (which is 1 + cos 0) divided by the length of the total 
elastic (which is 2). The probability that the particle in state Pv arrives at - u  
is the length of L2 (which is 1 - cos 0) divided by the length of the total 
elastic. If we denote these probabilities respectively by P(o~', Pv) and P(o~, 
pv), we have 

P(o~, p~) 1 + cos 0 0 - - cos 2 - (1) 
2 2 

1 - cos 0 _ sin2_O (2) 
P(o~, pu) - 2 2 

The probabilities that we find in this way are exactly the quantum probabilities 
for the spin measurement of a spin- 1/2 quantum entity, which means that we 
can describe this macroscopic machine by the ordinary quantum formalism 
with a two-dimensional complex Hilbert space as the carrier for the set of 
states of the entity. 

2. QUANTUM STRUCTURES 

Already from the advent of quantum mechanics it was known that the 
structure of quantum theory is very different from the structure of classical 
theories. This structural difference has been expressed and studied in terms 
of different mathematical categories, and we mention here some of the most 
important ones: (1) if one considers the collection of properties (experimental 
propositions) of a physical entity, then it has the structure of a Boolean lattice 
for the case of a classical entity, while it is non-Boolean for the case of a 
quantum entity (Birkhoff and yon Neumann, 1936; Jauch, 1968; Piron, 1976), 
(2) for the probability model, it can be shown that for a classical entity it is 
Kolmogorovian, while for a quantum entity it is not (Foulis and Randall, 
1971; Randall and Foulis, 1979, 1983; Gudder, 1988; Accardi, 1982; Pitovski, 
1989), (3) if the collection of observables is considered, a classical entity 
gives rise to a commutative algebra, while a quantum entity not (Segal, 1947; 
Emch, 1984). 

The presence of these deep structural differences between classical theo- 
ries and quantum theory has contributed strongly to the belief that classical 
theories describe the ordinary "understandable" part of reality, while quantum 
theory confronts us with a part of reality (the microworld) that is impossible 
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to understand. Therefore there is still the strong belief that quantum mechanics 
cannot be understood. The example of our macroscopic machine with a 
quantum structure challenges this, because obviously the functioning of this 
machine can be understood. The aim of this paper is to show that the main 
part of quantum structures can indeed be explained in this way and that the 
reason why they appear in nature can be identified. In this paper we shall 
analyze this explanation, which we have named the "bidden measurement 
approach," within the category of the probability models. We refer to Aerts 
and Van Bogaert (1992), Aerts et al. (1993a,b), Aerts (1994), and Aerts and 
Durt (1994a,b) for an analysis of this explanation in terms of other categories. 

The original development of probability theory aimed at a formalization 
of the description of a probability that appears as the consequence of a lack 
of knowledge. The probability structure appearing in situations of lack of 
knowledge was axiomatized by Kolmogorov and such a probability model 
is now called Kolmogorovian. Since the quantum probability model is not 
Kolmogorovian, it has now generally been accepted that the quantum proba- 
bilities are not a description of a lack of knowledge. Sometimes this conclusion 
is formulated by stating that the quantum probabilities are ontological proba- 
bilities, as if they would be present in reality itself. In the hidden measurement 
approach we show that the quantum probabilities can be explained as being 
due to a lack of knowledge, and we prove that what distinguished quantum 
probabilities from classical Kolmogorovian probabilities is the nature of this 
lack of knowledge. Let us go back to the quantum machine to illustrate what 
we mean. 

If we consider again our quantum machine (Figs. 1 and 2) and look for 
the origin of the probabilities as they appear in this example, we can remark 
that the probability is entirely due to a lack of knowledge about the measure- 
ment process, namely, the lack of knowledge of where exactly the elastic 
breaks during a measurement. More specifically, we can identify two main 
aspects of the experiment eu as it appears in the quantum machine: 

�9 The experiment e, effects a real change on the state Pv of the entity 
S. Indeed, the state pv changes into one of the states p ,  or P-u by the 
experiment e,. 

�9 The probabilities appearing are due to a lack of knowledge about a 
deeper reality of the individual measurement process itself, namely 
where the elastic breaks. 

These two effects give rise to quantumlike structures. The lack of knowledge 
about a deeper reality of the individual measurement process we have referred 
to as the presence of "hidden measurements" that operate deterministically 
in this deeper reality (Aerts, 1986, 1987, 1991), and this is the origin of the 
name that we gave to this approach. A consequence of this explanation is 
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that quantum structures turn out to be present in many other aspects of reality 
where the two mentioned effects appear. We think of the many situations in 
the human sciences where generally the measurement disturbs profoundly 
the entity under study, and where there is almost always a lack of knowledge 
about the deeper reality of what is going on during this measurement process. 
In the final part of this paper we give some examples of quantum structures 
appearing in such situations. 

3. QUANTUM, CLASSICAL,  AND I N T E R M E D I A T E  

If the quantum structure can be explained by a lack of knowledge on 
the measurement process, we can go a step further, and wonder what types 
of structure arise when we consider the original models, with lack of knowl- 
edge on the measurement process, and introduce a variation of the magnitude 
of this lack of knowledge. We have studied the quantum machine under 
varying "lack of knowledge," parametrizing this variation by a number e 
[0, 1], such that e = 1 corresponds to the situation of maximal lack of 
knowledge, giving rise to a quantum structure, and e = 0 corresponds to the 
situation of zero lack of knowledge, generating a classical structure, and 
other values of e correspond to intermediate situations, giving rise to a 
structure that is neither quantum nor classical (Aerts et al., 1992, 1993a). It 
is this model that we have called the e-model, and we want to introduce it 
again in this paper. 

We start from the quantum machine, but introduce different types of 
elastic. An e, d-elastic consists of three different parts: one lower part, where 
it is unbreakable, a middle part, where it breaks uniformly, and an upper 
part, where it is again unbreakable. By means of the two parameters e 
[0, 1] and d ~ [ - 1  + e, 1 - ~], we fix the sizes of the three parts in the 
following way. Suppose that we have installed the e, d-elastic between the 
points - u  and u of the sphere. Then the elastic is unbreakable in the lower 
part from - u  to (d - ~)-u, it breaks uniformly in the part from (d - ~)-u 
to (d + e) �9 u, and it is again unbreakable in the upper part from (d + ~). u 
to u (see Fig. 3). 

Fig. 3. A representation of the experiment 
e~,,d. The elastic breaks uniformly between the 
points (d - e)u and (d + e)u, and is unbreak- 
able in other points. 
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An eu experiment performed by means of an e, d-elastic shall be denoted 
by e~.a. We have the following cases: 

1. v. u --- d - e. The particle sticks to the lower part of  the �9 d-elastic, 
and any breaking of the elastic pulls it down to the point - u .  We have 
P~ (o7, Pv) = 0 and P~(o~, Pv) = 1. 

2. d - �9 < v . u  < d + �9 The particle falls onto the breakable part of  
the �9 d-elastic. We can easily calculate the transition probabilities and find 

P~(o~,pO = l ( v . u  - d + �9 (3) 

1 
P'(o~, PO = 2e (d + �9 - v .  u) (4) 

3. d + e --- v. u. The particle falls onto the upper part of  the e, d-elastic, 
and any breaking of the elastic pulls it upward, such that it arrives in u. We 
have P~(o~, Pv) = 1 and P~(o~, Pv) = O. 

4. P R O B A B I L I T I E S  A P P E A R I N G  IN P H Y S I C A L  S I T U A T I O N S  

If  we want to analyze the structure of  the quantum probability model 
in the light of axioms that have been formulated for classical probability 
theory, we first have to be very specific about the situation that we consider. 
In physics (and hence also in quantum mechanics and classical mechanics) 
we consider a situation where we have a physical entity S that can be in 
different states p, q, r, . . . .  and we will denote the set of  states by E. On 
this physical entity S, in a certain state p, we perform experiments e, f, g, 
. . . .  that respectively have sets of possible outcomes Oe, Of, Og . . . . .  Let 
us denote the collection of all relevant experiments by %. There are different 
places in which probability appears in this scheme. 

1. The probabil i ty connected to the states. In many occasions it is not 
possible to prepare the entity S in such a way that we know in which states 
it is before we start an experiment. We can only prepare it such that we are 
left with a situation of "lack of knowledge" about the state of the entity. This 
situation of lack of knowledge is described by means of a probability measure 
Ix: ~ ( ~ )  ---> [0, 1] on the set of states, such that ~ ( ~ )  is a or-algebra of 
measurable subsets of  ~, and for K ~ ~ ( E )  we have that Ix(K) is the 
probability that the state of  the entity S is in the subset K. We have (a) ix(Z) 
= 1, and (b) IX(Ui Ki) = E i  IX(Ki) for sets Ki such that K, n Km = 0 for n 
:~ m. What we call "states" p, q, r, . . .  are often called "pure states" and 
what we call "situations of lack of knowledge on the states" Ix, v . . . .  are 
often called "mixed states." 
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2. The probability connected to the experiments. Even when the entity 
S is in a state p and an experiment e is performed, probability, defined as 
the limit of the relative frequency connected to an outcome ok ~ Oe, appears. 
For a fixed state p, the probability that an experiment e gives an outcome in 
a subset A e C Oe, denoted by P(A ~, p), can be described as a probability 
measure on the outcome set Oe of the experiment e. Hence a map P: ~ ( O D  
X E --~ [0, 1] such that ~(O~) is a collection of measurable subsets of  Oe 
and (a) P(O~, p) = 1, and (b) P(UA~, p) = "s P(A~, p) for sets A~ such that 
a~ 71A~ = t3 for i @j.  

3. The general probability. Most of the time we measure a probability 
in the laboratory that contains both just mentioned probabilities. It is the 
probability that in a situation p~ of lack of knowledge on the states, an 
experiment e gives an outcome in a subset A e C Oe, and we will denote it 
by P(A% p~). This probability is, for a given experiment e, a map P: ~(Oe)  
X ~ ( E )  ~ [0, 1], where ~ ( E )  is the set of  probability measures on E. 

4. The eigenstate sets and the possibility-state sets. As in Aerts (1994), 
we introduce for an experiment e the eigenstate sets as maps eig: ~(0~) 
~(E) ,  where for A e C Oe we have 

eig(A ~) = {pip E ~, if S i s  inp ,  

then the outcome of e occurs with certainty in A ~} (5) 

We also introduce the possibility-state sets as maps pos: ~(0~) ~ ~(~) ,  
where for A e C O~ we have 

P ~ = {PIP ~ E, i f S i s i n p ,  

then the outcome of  e occurs possibly in A e} (6) 

Clearly we always have 

eig(A ~) C pos(a ~) (7) 

Theorem 1. We consider an entity S in a situation with lack of knowledge 
about the states described by the probability measure ~ on the state space. 
For an arbitrary experiment e and set of  outcomes A ~ C Oe we have 

i~(eig(Ae)) < p(A ~, p~) < ~(pos(Ae)) 2 (8) 

Proof As defined, we have that p~(eig(A~)) is the probability that the 
state of  the entity is in the subset eig(A~). If  the state is in eig(Ae), the 
experiment e gives with certainty an outcome in A% and therefore ~(eig(A~)) 

z In case eig(A e) and/or pos(A e) are nonmeasurable subsets, we use the outer measure of Ix for 
eig(N) and the inner measure of ~ for pos(X). 
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<: P(A e, ~). As defined, we have that tx(pos(A~)) is the probability that the 
state o f  the entity is in pos(A~). If  the state is in p o s ( N ) ,  the experiment e 
has a possible outcome in A e, and therefore P(A e, ~) <~ ~(pos(Ae)).  

We shall show in the next section that for a classical probability model,  
the two inequalities become equalities. But first we want to illustrate all these 
concepts on the quantum machine. 

5. I L L U S T R A T I O N  O N  T H E  Q U A N T U M  M A C H I N E  

It is easy to see how these concepts are defined for the quantum machine 
(and also for the e-model). For a considered experiment e,  (or e ' in the e- u,d 

model), we have an outcome set O,  = {o~', o~}. The set o f  states is E = 
{pvl v E sur f} .  The situations with lack o f  knowledge about the states are 
described by probability measures on the surface of  the sphere. We have also 
described P'(Au, pv) for an arbitrary A, C O, [see (3) and (4)]. For the 
eigenstate sets and the possibility-state sets we have (see Fig. 4) 

eig~({o~'}) : {Pvld  + ~ <- v . u } ,  e ig ' ({o~})  = {p~]v .u  -< d - e} (9) 

pos~({oT}) = {p~ld  - ~ < v ' u } ,  pos ' ( {o~})  = {p~[v 'u  < d + r (10) 

We can consider the following specific cases: 

Fig. 4. The eigenstate sets eig"({o]'}) and eig"({o'~}), If the state of the entity (the position of 
the particle P) is in eig"({o]'}) [or in eig~({o~})], then the experiment e~,,a gives with certainty 
the outcome o]' [or with certainty the outcome o~]. We also have represented the possibility 
state sets, pos~({o~}) [pos'({o~})], the collection of states where the entity gives a possible 
outcome o]' [o~]. 
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1. The quantum situation (e = 1). For e = 1 we always have d = 0, 
and the t -mode l  reduces to the original quantum machine that we introduced 
in Section 1. It is a model  for the spin of  a spin-1/2 quantum entity. The 
transition probabili t ies are the same as the ones related to the outcomes  of  
a S t e rn -Ger l ach  spin exper iment  on a sp in- l /2  quantum particle, o f  which 
the quantum_spin state in direction v = (cos do sin O, sin dO sin O, cos 0), 
denoted by t~. and the experiment  e.  corresponding to the spin exper iment  
in direction u = (cos [3 sin c~, sin [~ sin oL, cos ~), are described respect ively 
by the vector  and the self-adjoint operator  

1 [ cos eL 
t~v = (e -i+/2 cos 0/2, e i+/2 sin 0/2), H ,  = 2 ! \ e  if~ sin o~ 

e -if3 sin c~ / 

--COS O~ // 

(11) 

of  a two-dimensional  complex Hilber t  space. For the eigenstate sets and 
possibili ty states sets we find 

eig~({o~']) = {Pu}, eig~({o~}) = {P-,,} 

pos'({o]'}) = {p~lv 4: - u } ,  pos~({o~}) = {pvlv 4: u} (12) 

Suppose that we consider a situation with lack of  knowledge  about the 
state, described by a uniform probabil i ty distribution ~ on the sphere, which 
corresponds to a random distribution of  the point on the sphere. Then we 
can easily calculate the probabilit ies 

1 1 
P~({o'{}, p~) = ~, P~({o~'}, Ix) 2 (13) 

On the other hand, we have 

Ix(eig~({o~})) = O, Ix(eig~({o~})) = 0 

Ix(pos~({o~})) = 1, Ix(pos~({o~})) = 1 ( 1 4 )  

which shows that the inequalities of  Theorem 1 [see (8)] are very strong in 
this quantum case. 

2. The classical situation (e = 0). The  classical situation is the situation 
without fluctuations. I f  E = 0, then d can take any value in the interval [ -  1, 
+ 1], and we have 

eig~({o~}) = {pvld < v . u } ,  eig~({o~}) = {PvlV.U < d} (15) 

pos~({o~'}) = {p~]d < v . u } ,  pos~({og_}) = {p~[v.u <- d}  (16) 
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We again consider the situation of a random distribution of the point particle 
on the sphere described by the probability distribution 9- We then have in 
this case 

1 
P"({oT}, Ix) = ~ (1 - d), 

1 
P~({o~}, Ix) = ~ (1 + d) (17) 

On the other hand, we have 

1 
Ix(eig~({o~})) = ~ (1 - d) = ix(pos'({o~})) 

1 
Ix(eig'({o~})) = ~ (1 + d) = tx(pos'({o~})) (18) 

which shows that the inequalities of Theorem 1 [see (8)] have become 
equalities in this case. 

3. The general situation. To give a clear picture of the general situation, 
we introduce additional concepts. First we remaxk that the regions of eigen- 
states eig~({o~}) and eig~({o~}) and the regions of possibility states 
pos~({uT}) and pos'({o~}) are determined by the points of spherical sectors 
of surf centered around the points u and - u  (see Figs. 4 and 5). We denote 
a closed spherical sector centered around the point u E surf  with angle 0 by 
see(u, 0), and an open spherical sector with the same angle by sec~ 0). 
We call kw the angle of the spherical sectors corresponding to eig~({ o~'}) for 
all u; hence for 0 +~ �9 we have eig'({o~}) = {pvlv E sec(u, k~)}, and eig ~ 
({u~}) = {pvlv  ~ sec~ h~ for e = 0 (see Fig. 5). We can verify easily 
that eig'({o~}) is determined by a spherical sector centered around the point 
- u .  We call IX~ the angle of this spherical sector; hence, for 0 v ~ �9 we 
have eig~({o~}) = {pvlv ~ s e c ( - u ,  IXw and eig~({o~}) = {p,,Iv E 
see~ ~ ) }  for �9 = O. For f3 ~ ~ we have pog({o"t}) = {pvlV 
sec~ ~r - IXS)}, and pos'({oT}) = {p ,  lv ~ s e c ( - u ,  ~r - IX~)} for �9 = 0. 

e Fig. 5. The different angles ka and I~a charac- 
terizing the spherical sectors of the eigenstate 
sets and possibility sta~e sets. 
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For 0 :# r we have pos ( {o~} )  = {pvlV ~ s e c ~  rr - hw and 
pos ' ( {o~} )  = { p v l v  ~ s e c ( - u ,  7r - hw for r = 0. We have 

cos hw = e + d, cos p~w = ~ - d, )ke-d = Ixw (19) 

6. T H E  C L A S S I C A L  S I T U A T I O N  

We want to formulate now the classical situation in this general scheme. 
We shall see that in the characterization of a classical probability model, the 
inequalities of Theorem 1 play an important role. 

Def in i t ion  1. Suppose that we are in the situation I.L of lack of knowledge 
on the states. We say that an experiment e is a "classical experiment" iff 
p~(eig(Ae)) = Ix(pos(Ae))  for all subsets A e C Oe. In other words, a classical 
experiment is an experiment where all states, except a collection of measure 
zero, give rise to predetermined outcomes for this experiment. 

Classical experiments are experiments with predetermined outcomes 
(except for a set of states of  measure zero that as a consequence do not 
contribute to the statistics). For these classical experiments we can show that 
probability always originates in a lack of knowledge on the states. 

Theorem  2. If  we are in the situation tx of  lack of knowledge on the 
states, and e is a classical experiment, then for each A e e ~(Oe) we have 

Ix(eig(Ae)) = P(A  e, t ~) -- Ix(pos(Ae))  (20) 

P r o o f  A direct consequence of Definition 1 and Theorem 1. 

We shall show now that for classical experiments Bayes'  formula for 
the conditional probability is valid. To be able to analyze the validity of  
Bayes '  formula in the scheme that we have presented here, we must give an 
operational definition for the concept of conditional probability. Here we are 
confronted with a conceptual problem, since in most textbooks, the conditional 
probability is defined by means of Bayes'  formula. Since the conditional 
probability is a primary physical quantity that is measured in the laboratory, 
we should define it operationally and without the use of  Bayes'  formula. 

7. T H E  C O N C E P T  OF C O N D I T I O N A L  P R O B A B I L I T Y  

We want to make clear that there is a distinction between the occurrence 
of an outcome when an experiment is performed, and the conditioning on 
an outcome corresponding to an experiment. 

Def in i t ion  2. Given a situation IX of lack of knowledge on the states of 
an entity S, described by a probability measure on this set of  states ~, we 
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condition the entity S on a subset At c Of for an exper imentf  if we consider 
during the performance of the experiment e only those trials where the 
situation of the entity before the experiment e is such that we can predict 
the outcome for the exper imentf to  occur with certainty in A i, if we decided 
to perform the experiment f 

From this definition it follows that conditioning is equivalent to a change 
of the situation Ix before the experiment in such a way that the experiment 
f would give with certainty an outcome in At, if it were to be executed. The 
new situation of lack of knowledge is described by the probability measure 
that we shall denote by IxAI: ~ ( ~ )  ---) [0, 1]. It is defined for an arbitrary 
subset K C ~ as follows: 

~mi(K) = Ix(K A eig(Af))/Ix(eig(Ar) ) (2l) 

Now that we have introduced this concept of "conditioning" on an experiment, 
we can introduce the general concept of conditional probability. 

Definition 3. Given a situation Ix of lack of knowledge on the states of 
an entity, described by the probability measure Ix, and given two experiments 
e and f, then we want to consider the conditional probability P(Ae, At, t~) �9 
This is the probability that the experiment e makes occur an outcome in the 
set Ae when the situation is conditioned on the set Ar for the experiment f. 
The conditional probability is a map P: ~(O~) • ~ ( 0  r) • 3~(~) ~ [0, 1]. 

Theorem 3. Given a situation Ix of lack of knowledge on the states, and 
two experiments e and f, if the experiment e is a classical experiment, 
then the conditional probability P(Ae, At, ~) satisfies Bayes' formula. More 
specifically, we have 

P(Ae, Af, Ix) = Ix(eig(Ae) (-I eig(Ar))/Ix(eig(Af)) 

Proof  We have [see (21)] that P(Ae, At, Ix) = P(Ae, IxAf). If e is a 
classical experiment, it follows from Theorem 2 that P(A e, IxAf) = 
iXar(eig(A~) ) = Ix(eig(A~) fq eig(Af))/jx(eig(Af)). This shows that Bayes' for- 
mula is valid. 

From this theorem it can intuitively be seen that Bayes' formula for the 
conditional probability is not valid for the case of experiments that are 
nonclassical. We shall now analyze all these situations in the e-model and 
show how the conditional probability in the e-model evolves continuously 
from the quantum transition probability, for the case of ~ = 1, to a classical 
Kolmogorovian probability satisfying Bayes' formula, for the case e = 0. 
We shall also show that for values of e strictly between 1 and 0, the conditional 
probability is neither quantum nor classical. 
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8. T H E  C O N D I T I O N A L  P R O B A B I L I T Y  A N D  T H E  e - M O D E L  

Given a situation tx of  lack of  knowledge about the state of  the point 
particle described by a uniform probability measure on the sphere, this corres- 
ponds to the situation where the particle P is distributed at random on the 
sphere. For a fixed e, and two parameters d and c both in the interval [ -  1 
+ e, 1 - el, there are also given the two experiments e~,a and e~,c (Fig. 6). 
In general we consider the conditional probability for arbitrary elements o f  
the set of  measurable subsets of  the outcome sets o f  the two experiments. 
Since in the e-model we only have experiments e~,d, with two outcomes o7 
and o~, we want to alleviate somewhat  the notation. Therefore we shall denote 
the conditional probability that the experiment e~,a gives the outcome o7 
(respectively o~), when the entity is conditioned for the outcome o~ of  the 
experiment e~w,c, by P(u, w, ix) [respectively P ( - u ,  w, Ix)]. In a similar way 
we denote the conditional probability that the experiment e~,a gives the 
outcome o~ (respectively o~), when the entity is conditioned for the outcome 
o2 w of  the experiment e~,c by P(u, - w ,  Ix) [respectively P ( - u ,  - w ,  Ix)] (see 
Fig. 6). We repeat again: the conditional probability P(u, w, Ix) is the probabil- 
ity that the experiment e~,a gives the outcome o~ if the entity is condit ioned 
on the outcome o~' for the experiment e~,c. This means that the lack of  
knowledge on the states is such that if we would decide to perform the 
experiment e~w,c, the outcome o~' would come out with certainty. In other 
words (see Fig. 6), the state of  the entity is such that the particle is distributed 
uniformly inside the spherical sector eig({o~(}), the grey area on Fig. 6. It is 
easy to formulate in a similar way the other conditional probabilities P ( - u ,  

Fig. 6. The situation corresponding to the 
conditional probability for the e-model. The 
lack of knowledge about the state of the parti- 
cle is described by a uniform probability distri- 
bution ix on the sphere. For a fixed e and two 
parameters d and c in the interval [ -1 + e, 
1 - e], we consider two experiments e~,,a and 
e~,c. We want to calculate the conditional prob- 
ability P(u, w, Ix) that the experiment e~,,d gives 
the outcome o'~ when the entity is conditioned 
on the outcome o~' for the experiment e~w,~. 
This means that before the start of the 
experiment e',,,d, the situation is such that if we 
would perform the experiment e~,c, the 
outcome o• would come out with certainty. 
This conditioning is expressed by a new proba- 
bility measure on the sphere, which is zero 
outside the grey area, and equal to the old 
one, except for a renorrnalization factor, in the 
grey area. 
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w, Ix), P(u, -w, Ix), and P(-u, -w, Ix). The explicit calculation o f  these 
conditional probabilities is a long exercise of  classical calculus, and therefore 
we refer to Aerts and Aerts (1994b) for a detailed exposition o f  this calculation. 
Here we only give the result. Let us call a the angle between the two vectors 
u and w, then we have 

P(u, w, Ix) = P,'H@ - cos2) 

+ H(e - sin 2)'Pz'H(cos 2 - e) + p3"H(sin 2 - e ) (22) 

where H(x) is the Heaviside function and 

cos a(1 + ~) 1 
Pl - 4e + ~ (23) 

1 + to(u, w) cos oL + 1 o'(u, w) (24) 
P2 = Pl + ~ 4rr(1 - e) + 4ave(1 - e) 

P3 = P l  + 
to(u, w) - to ( -a ,  w) 

4,rr(1 - e) 

+ (cos  c~ - 1)~r(-u, w) + (cos a + 1)e(u, w) 
4we(1 - e) 

where 

/ ~lcos(ed2)]2y 12 
to(u, w) = 4E A r c c o s |  1 

i 

\ 1 - e 2 /] 

(25) 

- 4 Arcsin sin(od2) 
(1 - E2)  I/2 (26) 

and 

- , 2 ~  1/2 

: -icos 2   - (1 - E! 2)  Arccos 
tg(od2) 

( 1  - -  E2)  I/2 

(27) 

To interpret the graph of  this function (see Fig. 7), we first consider the 
two extremal cases, the classical case, where e = 0, and the quantum case, 
where e = 1. 

1. The classical case (e = 0). In this case we find 

P(u, w, Ix) = 1 - -- (28) 
"rr 

which is linear function in the angle (see also Fig. 7 in this respect). 
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Fig. 7. The conditional probability P(u, w, ix) for the ~-model. It can be seen how this conditional 
probability evolves continuously from the quantum situation, where �9 = 1 and it equals the 
quantum transition probability cos2(a/2), where a is the angle between u and w, to the classical 
situation, where �9 = 0 and it is a linear function of the angle e~ between u and w. In some 
cases of the intermediate situation 0 < ~ < 1 that we shall specify later, the conditional probability 
cannot be fitted in a Kolmogorovian probability model nor in a quantum probability model. 

2. The quantum case (e = 1). For  this case we only have to take into 
account  the contr ibut ion pj  o f  (22), and hence we find 

P(u, w, p~) = cos2(cx/2) (29) 

which  is the we l l -known quantum transit ion probabi l i ty  be tween the states 

p ,  and Pw. 

Now that we have ident i f ied the two extremal  cases, we can interpret  
the graph in Fig. 7, and see that the condi t ional  probabi l i ty  P(u, w, PO evolves  
cont inuously  f rom the quantum transit ion probabi l i ty  be tween the states p ,  
and Pw to a l inear  function of  the angle be tween  the two vectors  u and w. 

9. A N  I N T E R M E D I A T E  S I T U A T I O N  OF THE c - M O D E L  T H A T  
IS N E I T H E R  C L A S S I C A L  N O R  Q U A N T U M  

A comple te  probabi l i s t ic  analysis  of  the in termedia te  si tuation of  the e- 
mode l  is presented in Aer ts  and Aerts  (1994b). Here  we only show that for 
a specif ic  value of  e = , f2 /2  the condi t ional  probabi l i t ies  o f  the e -mode l  
cannot  be fi t ted into a quantum probabi l i ty  model  nor into a c lass ical  probabi l -  
i ty model .  

Theorem 4. For  e = , j2 /2 ,  the condi t ional  probabi l i t ies  of  the t - m o d e l  
cannot  be fi t ted into a c lass ica l  nor  into a quantum probabi l i ty  model .  

Proof We shall g ive  a p roof  ex absurdum, and suppose  that there does 
exist  a Ko lmogorov ian  model  sat isfying Bayes '  fo rmula  for the condi t ional  
probabi l i ty  for this value of  e. We cons ider  three exper iments  e~,a, e[~, and 
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e~,,a, such that d = 0 and u, v, and w are in the same plane, with an angle 
2r  

of  --f between u and v, between v and w, and between w and u. I f  we use 

the general expression for the conditional probabili ty (22), we find P(v, w, 
p~) = 0.78, P(u, w, IX) = 0.22, and P ( - u ,  v, Ix) = 0.22. As we have defined, 
P(v, w, Ix) is the probabili ty that the experiment  e~,d gives the outcome oy if 
we have condit ioned the entity in such a way that if  we would perform the 
exper iment  e~,a, it would give with certainty an outcome o] ~. To be able to 
express more  clearly the hypothesis  of  the existence of  a Kolmogorovian  
probabil i ty model,  we write these conditional probabili t ies in a more  standard 
notation. Hence  P(v, w, iz) = P(e~,d = OVl le~,d = O]~), P(u, w, ~) = P(e~, d : 
oy I e~,a = o7), and P ( - u ,  v, Ix) = P(e~,d = o[le~.d = Oy) under the preparation 
Ix. I f  there does exist a Kolmogorovian  probabili ty model  satisfying the 
Bayes '  formula,  there exists a set X (playing the role of  the sample space), 
a (r-algebra ~ (X)  (playing the role of  the set of  events), and a probabil i ty 
measure  v: ~ ( X )  --~ [0, 1], such that the conditional probabili t ies P(e~,d = 
OVl [ew, de = 0~), P(e~, d =- oVi[e~Cv, d = o]~), and P(e~,d = 02 . . . .  I ev, d 0]') can be 
written under the appropriate form. This means that there exist elements U, 
V,, W ~ ~ ( X )  such that 

= e~ = v (V  N W) 
P(e~, d oy[ w,d Oy) - v ( W )  (30) 

P(e~u,d = o~le~.,d = o~) = v (U n W)  
v ( W )  (31) 

P(e~,d = o~[e~.d = oy) -- v(UC n V) 
v (V)  (32) 

We also have v (W)  = ~(o~', Ix) = 1/2 and v(V)  = Ix(oy, p~) = 1/2. Using 
the fact that v is a probabil i ty measure,  and (31) and (32), and substituting 
the values of  the conditional probabilities, we get 

v(V n W) = v(U N V n W) + v(U c n V N W) = �89 w, Ix) = 0.39 (33) 

v(U A W) = v(U N V O W) + v(U N VC N W) =-~P(u, w, Ix) = O.11 (34) 

v(U c A  V) = v(U c A  V N W) + v(U c A  V N W c) = � 8 9  v, ~) = 0 . l l  

(35) 

I f  we subtract (35) f rom (34), we find 

v(U c A  V N  W) = 0 . 2 8  + v(U n V c A  W)  (36) 

which implies that 
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0.28 -< v ( U  c N V A W )  (37) 

On the other hand, from (35) it follows that 

v ( U  c f-I V 71 W )  <-- 0.11 (38) 

The inequalities (37) and (38) deliver us the contradiction that we were looking 
for. The conclusion is that for these values of the conditional probabilities there 
does not exist a Kolmogorovian probability model satisfying the Bayes 
formula. 

Also for the proof of the nonexistence of a Hilbertian model we proceed 
ex  absurdum.  If there exists a two-dimensional complex Hilbert space model, 
where the conditional probabilities are described by the transition probabili- 
ties, we can find three orthonormal bases {+1, +2}, {th, I~J2}, {Xl, X2} such that 

= I(+,,  2 - - I ( * , ,  x012 = I(x,, +2 12 = 1(+2, ,2 12 

= ](l~J2, X2)[ 2 = ](X2, (~1)] 2 = 0 .78  (39) 

~2 = I(+l, t~2)l 2 = l(t~, x2)[ 2 = I(x,, +~)l 2 = 1(+2, *l)l 2 

= 1<,2, Xl)l 2 = I(x2, +2>12 = 0.22 (40) 

This means that there exist five angles 0~, 02, 03, 04, and 05 such that 

( X l ,  1~12) = 8"el~ ( X 1 ,  (~)1) ~- 8"el~ ((l)l, qJ2) = 8"ei~ 

(X1, d?2) = ~ "el~ ((b2, ~2) = ~ "el~ (41) 

If {4h, (I)2} is an orthonormal basis, we have (Xl, ~2) = (Xl, qbl)(qbl, t~2) + 
(Xb d)2)(d)2, ~2), and hence 

8 " e iO l = 8 " e i112" 8 " e i03 q-  "~ . e i04 . ~ . e i05 (42) 

and also the complex conjugate 

8 . e -i~ = 8 . e -i~ 8 .  e - i03  -t- ~ " e - i 0 4 .  ~t . e - i05  (43) 

If we multiply these last equations term by term, we find 

82 = 84 _}_ ,~4 -I- 82'y2e i(02+03-04-05) + 82,u176176176176 (44) 

This we can write as 

82 --- 84 _}_ ~/4 "4" 282~ 2 COS(02 q- 03 -- 04 -- 05) (45)  

But then we must have 

82 __ 84 __ ~/4 
cos(02 + 03 - 04 - 05) - 282.y 2 (46) 



1182 Aerts 

If  we put in the values 82 = 0.22 and ~/2 = 0.78, we find 

COS(02 + 03 - -  04 --  05) = - - 1 . 2 7  (47) 

From this contradiction we can conclude that there does not exist a two- 
dimensional Hilbert space model such that the conditional probabilities can 
be described by transition probabilities in this Hilbert space. 

This theorem shows that we really have identified a new region of 
probabilistic structure in this intermediate domain. In Aerts and Aerts (1994b) 
we show that for any value of �9 different from 0, the probability structure 
of  the e-model is non-Kolmogorovian (not satisfying the Bayes formula for 
the conditional probabilities). We also show that there is a domain of e 4:1  
where a Hilbert space model can be found, but another domain where this 
is not the case. 

We come now to the last section of this paper, where we sketch how 
these non-Kolmogorovian probabilities appear in other regions of nature. 

10. NON-KOLMOGOROVIAN PROBABILITIES IN OTHER 
REGIONS OF NATURE 

As follows from the foregoing analysis, nonclassical experiments, giving 
rise to nonclassical structure, are characterized by the presence of nonpredeter- 
mined outcomes. This makes it rather easy to recognize the nonclassical 
aspects of experiments in other aspects of  reality. Let us consider the situation 
of a decision process developing in the mind of a human being, and we refer 
to Aerts and Aerts (1994a) for a more detailed description. Hence our entity 
is a person, its states being the possible "states" of this person. Experiments 
are questions that can be asked of the person, to which she or he has to 
respond with yes or no. The typical situation of an opinion poll can be thought 
of as a concrete example. Let us consider three different questions: 

�9 u: Are you in favor of the use of nuclear energy? 
�9 v: Do you think it would be a good idea to legalize soft drugs.'? 
�9 w: Do you think capitalism is better than social-democracy? 

We have chosen types of questions about which many persons should not 
have predetermined opinions. Since the person has to respond with yes or 
no, she or he, without an opinion before the questioning, needs to form her 
or his opinion during this process of questioning. We can use the e-model 
to represent this situation. To simplify the situation, but without touching the 
essence, we make the following assumptions about the probabilities that are 
involved. We suppose that in all cases 50% of the persons have answered 
the question u with yes, but only 15% of the persons had a predetermined 
opinion. This means that 70% of the persons formed their answer during the 
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u 

1 
~U 

| fraction of people with 
predetermined answer 'yes' 

fraction of people without 
predeten-nined answer 

fraction of people with 
predetermined answer 'no' 

Fig. 8. A representation of the question u by means of the e-model. We have indicated the 
three regions corresponding to predetermined answer yes, without predetermined answer, and 
predetermined answer no. 

process  of  quest ioning.  For  s impl ic i ty  we make  the same assumpt ions  for  v 
and w. We can represent  this si tuation in the e -mode l  as shown in Fig.  8. 
We also make  some assumptions  of  the way  in which the different  opinions  
re la ted to the three quest ions influence each other. We can represent  an 
example  of  a poss ib le  interact ion by means  o f  the ~-model  (Fig. 9). One can 
see how a person can be a strong proponent  for the use o f  nuclear  energy, 
whi le  hav ing  no predetermined opin ion  about  the legal iza t ion of  soft drugs 
(area 1 in Fig.  9). Area 4 cor responds  to a sample  o f  persons who have a 
p rede te rmined  opinion in favor  of  legal iza t ion  of  soft drugs and in favor  of  
capi ta l ism.  For  area  10 we have persons who have prede te rmined  opin ion  
against  the legal iza t ion of  soft drugs and against  capi ta l ism.  Al l  the 13 areas 
of  Fig.  9 can be descr ibed  in such a s imple  way. 

Fig. 9. A representation of the three questions 
u, v, and w by means of the E-model. We 
have numbered the 13 different regions. For u 
example: (1) corresponds to a sample of per- 
sons who have predetermined opinion in favor 
of nuclear energy, but have no predetermined - w /  v 
opinion for the other two questions, (4) corres- 

t 
ponds to a sample of persons who have prede- 
termined opinion in favor of legalization of 
soft drugs and in favor of capitalism, (10) 
corresponds to a sample of persons who have 
predetermined opinion against the legalization 
of soft drugs and against capitalism, (13) cor- - w 
responds to the sample of persons who have 
predetermined opinion about none of the three 
questions, etc. -u 



1184 Aerts 

Deliberately we have chosen the different fractions of people in such a 
way that the conditional probabilities fit into the t-model for a value of 
= ~ / 2 .  This means that we can apply Theorem 4, and conclude that the 
collection of conditional probabilities corresponding to these questions u, v, 
and w can neither be fitted into a Kolmogorovian probability model nor into 
a quantum probability model. We are developing now in Brussels a statistics 
for such new situations, which we have called "interactive statistics." By 
means of this statistics it should be possible to make models for situations 
where part of the properties to be tested are created during the process 
of testing. 

11. CONCLUSION 

The further development of an intermediate (between classical and quan- 
tum) probability theory and an interactive statistics could be very fruitful for 
physics as well as for other sciences. 

We are at work now on the construction of a general theory for intermedi- 
ate structures (Aerts, 1986, Aerts, 1987, Aerts, Durt, and Van Bogaert, 1993, 
Aerts, 1994, Aerts and Durt, 1994a,b, Coecke, 1995a,b,c). This theory can 
probably be used to describe the region of reality between microscopic and 
macroscopic, often referred to as the meso scopic region. Actually, physicists 
use a very complicated heuristic mixture of quantum and classical theories 
to construct models for mesoscopic entities. There is, however, no consistent 
theory, and a general intermediate theory could perhaps fill this gap. We try 
to find examples of simple physical phenomena in the mesoscopic region 
that could eventually be modeled by an e-like model (Aerts and Durt, 1994b). 
If we could succeed in building this intermediate theory, not only we would 
have a new theory for the mesoscopic region, but the existence of such a 
theory would also shed light on old problems of quantum mechanics (the 
quantum-classical relation, the classical limit, the measurement problem, 
etc.). 

So far we have only been developing the kinematics of this intermediate 
theory (Aerts, 1994; Aerts and Durt, 1994a,b), but once the kinematics is 
fully developed, the way to construct a dynamics for the intermediate region 
is straightforward. We can study the imprimitivity system related to the Galilei 
group and look for representations of this Galilei group in the group of 
automorphisms of the kinematic structure of the intermediate theory. If we 
can derive an evolution equation in this way, it should continuously transform 
with varying e from the Schr6dinger equation (e = 1) to the Hamilton 
equations (~ = 0). 

As we have shown in the last section of this paper, the development of 
an interactive statistics could be of great importance for the human sciences, 
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where often nonpredetermined outcome situations appear. It could lead to a 
new methodology for these sciences. Actually, one is aware of the problem 
of the interaction between subject and object, but it is generally thought that 
this problem cannot be taken into account in the theory. 

We also want to remark that the "hidden measurement approach" defines 
a new quantization procedure. Starting from a classical mechanical entity 
and adding "lack of knowledge (or fluctuations)" on the measurement process, 
out of the classical entity appears a quantumlike entity. Another problem that 
we are investigating is an attempt to describe quantum chaos by means of 
this new quantization procedure. It can be shown that the sensitive dependence 
on the initial conditions that can be found in the e-model for the classical 
situation in the set of unstable equilibrium states disappears when the fluctua- 
tions on the measurement process increase. This could be the explanation 
for the absence of quantum chaos. 
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